ИООО «Кровельный завод ТехноНИКОЛЬ»

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ ТЕПЛОВОЙ ИЗОЛЯЦИИ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ С ПРИМЕНЕНИЕМ МАТЕРИАЛОВ ТЕХНОНИКОЛЬ

P 3.02.150-2015

ООО «ТехноНИКОЛЬ - Строительные Системы»

Одобрено

Государственное предприятие «Институт жилища – НИПТИС им. Атаева С.С.» Протокол заседания Ученого совета от 12.01.2015 г. № 1

Утверждено

Технический директор ООО «ТехноНИКОЛЬ – Строительные Системы»

Е. П. Войлов

2015 г.

РЕКОМЕНДАЦИИ

ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ ТЕПЛОВОЙ ИЗОЛЯЦИИ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ С ПРИМЕНЕНИЕМ МАТЕРИАЛОВ ТЕХНОНИКОЛЬ

P 3.02. <u>150</u> - 2015

Срок действия:

15 10 2015 r.

минск

МИНИСТЕРСТВО АРХИТЕКТУРЫ И СТРОИТЕЛЬСТВА РЕСПУБЛИКИ БЕЛАРУСЬ

НАУМНО-ПРОЕКТНО-ПРОИЗВОДСТВЕННОЕ РЕСПУБЛИКАНСКОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ

«СТРОЙТЕХНОРМ»

ВНЕСЕН В РЕЕСТР УЧЕТНОЙ РЕГИСТРАЦИИ

№

150

15.10.2015Г.

УДК 699.86.001.63 (083.74) (476)

Ключевые слова: теплоизоляционный материал ТЕХНОНИКОЛЬ, система утепления, теплоизоляционный слой, минераловатный утеплитель, экструдированный пенополистирол, проектирование

Предисловие

1	РАЗРАБОТАНЫ	ООО «ТехноНИКОЛЬ — Строительные Системы»
2	ОДОБРЕНЫ	Государственным предприятием «Институт жилища — НИПТИС им. Атаева С.С.», протокол заседания Ученого совета от 12 января 2015 г. № 1
3	ОДОБРЕНЫ ЗАРЕГИСТРИРОВАНЫ РУП	«Стройтехнорм» за N° 150 от 15.10.2015 г.

Содержание

1.	Общие положения	4
2.	Общие сведения о материалах ТЕХНОНИКОЛЬ	5
3.	Общие рекомендации по проектированию	5
4.	Легкая штукатурная система утепления	6
5.	Тяжелая штукатурная система утепления	8
6.	Вентилируемая система утепления с облицовкой легкого и тяжелого типа	9
7.	Вентилируемая система утепления с облицовкой из мелкоштучных материалов	. 10
Пр	иложение А (справочное)	. 12
Пр	иложение Б (справочное)	. 13
Пр	иложение В (рекомендуемое)	. 14
Биб	блиография.	.20

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ ТЕПЛОВОЙ ИЗОЛЯЦИИ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ С ПРИМЕНЕНИЕМ МАТЕРИАЛОВ ТЕХНОНИКОЛЬ

Дата введения — 2016-01-01

1. Общие положения

1.1. Область применения

Настоящие рекомендации распространяются на проектирование и устройство тепловой изоляции наружных ограждающих конструкций вновь возводимых и эксплуатируемых зданий и сооружений различного назначения с использованием материалов ТЕХНОНИКОЛЬ.

2.1. Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие технические нормативные правовые акты в области технического нормирования и стандартизации (далее — $TH\Pi A$):

ТР 2009/013/ВҮ. Здания и сооружения, строительные материалы и изделия. Безопасность; ТКП 45–2.04–43–2006 (02250). Строительная теплотехника. Строительные нормы проектирования;

ТКП 45–1.02–104–2008 (02250). Проектная документация на ремонт, модернизацию и реконструкцию жилых и общественных зданий и сооружений. Порядок разработки и согласования:

ТКП 45–3.02–113–2009 (02250). Тепловая изоляция наружных ограждающих конструкций зданий и сооружений. Строительные нормы проектирования;

ТКП 45–3.02–114–2009 (02250). Тепловая изоляция наружных ограждающих конструкций зданий и сооружений. Правила устройства;

ТКП 45–2.02–315–2018 (02250). Пожарная безопасность зданий и сооружений. Строительные нормы проектирования;

ТКП 45–1.02–295–2014 (02250). Строительство. Проектная документация. Состав и содержание;

СТБ 1995–2009. Плиты теплоизоляционные из минеральной ваты. Технические условия; СТБ EN 13164–2015. Материалы теплоизоляционные для зданий и сооружений. Изделия из экструдированного пенополистирола (XPS). Технические условия;

СНиП II-22-81. Каменные и армокаменные конструкции.

Примечание

При пользовании настоящими рекомендациями целесообразно проверить действие ТНПА по Перечню технических нормативных правовых актов в области архитектуры и строительства, действующих на территории Республики Беларусь, и каталогу, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году.

Если ссылочные ТНПА заменены (изменены), то при пользовании настоящими рекомендациями следует руководствоваться замененными (измененными) ТНПА. Если ссылочные ТНПА отменены без замены, то положение, в котором дана ссылка на них, применяется в части, не затрагивающей эту ссылку.

1.3. Термины и определения

В настоящих рекомендациях применяют термины с соответствующими определениями, установленные в ТКП 45–3.02–113.

2. Общие сведения о материалах ТЕХНОНИКОЛЬ

- 2.1. Теплоизоляционные материалы ТЕХНОНИКОЛЬ представляют собой плиты, изготавливаемые из:
- минеральной ваты, получаемой из расплава горных пород габбро-базальтовой группы;
 - экструдированного пенополистирола (XPS).
- 2.2. Плиты из минеральной ваты ТЕХНОНИКОЛЬ являются негорючими и предназначены для устройства теплоизоляционного слоя в системах утепления наружных ограждающих конструкций вновь возводимых и эксплуатируемых зданий и сооружений без ограничения этажности и степени огнестойкости здания.
- 2.3. Использование плит из минеральной ваты ТЕХНОНИКОЛЬ возможно в следующих типах систем утепления:
 - легкая штукатурная система утепления (см. раздел 4);
 - тяжелая штукатурная система утепления (см. раздел 5);
 - вентилируемая система утепления с облицовкой легкого и тяжелого типа (см. раздел 6);
- вентилируемая система утепления с облицовкой из мелкоштучных материалов (см. раздел 7).
- 2.4. Плиты из экструдированного пенополистирола ТЕХНОНИКОЛЬ применяются в качестве теплоизоляции при устройстве цоколя зданий в легких и тяжелых штукатурных системах утепления.
- 2.5. Теплоизоляционные материалы ТЕХНОНИКОЛЬ соответствуют требованиям ТР 2009/013/BY, СТБ 1995 (плиты из минеральной ваты), СТБ EN 13164 (плиты из экструдированного пенополистирола), что подтверждено наличием документов соответствия.
- 2.6. Номенклатура и рекомендуемая область применения теплоизоляционных материалов ТЕХНОНИКОЛЬ приведены в таблице А.1 (приложение А).
- 2.7. Характеристики теплоизоляционных материалов ТЕХНОНИКОЛЬ приведены в таблицах Б.1, Б.2 (приложение Б).

3. Общие рекомендации по проектированию

- 3.1. В системах утепления следует применять строительные материалы и изделия, соответствующие требованиям ТР 2009/013/ВҮ, имеющие документы соответствия Республики Беларусь.
- 3.2. Характеристики прочих строительных материалов, используемых при проектировании и устройстве систем утепления, следует принимать в соответствии с ТКП 45–2.04–43 (таблица А.1) либо по результатам испытаний, проведенных в независимых аккредитованных лабораториях.
- 3.3. Проектную документацию на системы утепления следует разрабатывать в соответствии с требованиями ТКП 45–1.02–104, ТКП 45–1.02–295.

¹⁾ СНиП имеют статус технического нормативного правового акта на переходный период до их замены техническими нормативными правовыми актами, предусмотренными Законом Республики Беларусь «О техническом нормировании и стандартизации».

- 3.4. Конструктивные решения систем утепления рекомендуется применять в соответствии с приведенными в приложении В характеристиками.
- 3.5. Конструкции систем утепления следует проектировать в соответствии с требованиями ТКП 45–3.02–113, а также противопожарными требованиями ТКП 45–2.02–315.
- 3.6. Толщину теплоизоляционного слоя следует определять в проектной документации на основании расчета сопротивления теплопередаче в соответствии с ТКП 45–2.04–43 (раздел 5).
- 3.7. Расчет сопротивления паропроницанию систем утепления следует выполнять в соответствии с требованиями ТКП 45–2.04–43 (раздел 9). В соответствии с ТКП 45–2.04–43 (6.1.2) допускается не выполнять расчет сопротивления паропроницанию конструкций, проектируемых с применением вентилируемых систем утепления.
- 3.8. Расчет прочности теплоизоляционных материалов, несущих конструкций систем утепления, анкерных устройств следует производить по методикам, приведенным в ТКП 45–3.02–113 (6.6–6.10).
- 3.9. Устройство систем утепления следует производить в соответствии с требованиями ТКП 45–3.02–114.

4. Легкая штукатурная система утепления

- 4.1. Легкая штукатурная система утепления является многослойной конструкцией, состоящей из следующих конструктивных слоев:
 - клеевого;
 - теплоизоляционного;
 - армированного;
 - декоративно-защитного.
- 4.2. Конструктивное решение легкой штукатурной системы утепления приведено на рисунке В.1 (приложение В).
- 4.3. В легких штукатурных системах утепления в качестве теплоизоляционного слоя рекомендуется применять плиты из минеральной ваты марок ТЕХНОФАС, ТЕХНОФАС ЭФФЕКТ.
- 4.4. При устройстве легкой штукатурной системы утепления в цокольной части здания высотой до 2,5 м от отметки уровня земли рекомендуется применять плиты из экструдированного пенополистирола с фрезерованной поверхностью марки ТЕХНОНИКОЛЬ CARBON ECO FAS, TEXHOПЛЕКС FAS.
- 4.5. Конструктивное решение легкой штукатурной системы утепления цокольной части здания приведено на рисунке В.2 (приложение В).
- 4.6. Теплоизоляционные плиты закрепляют к подоснове клеевыми составами точечным или сплошным методом.

При точечном методе нанесения клеевого состава следует обеспечить площадь контакта не менее 40% площади плиты. Точечный метод применяется для подоснов с неровностью поверхности до 3 мм.

При сплошном методе нанесения клеевого состава следует обеспечить площадь контакта не менее 85% площади плиты. Сплошной метод применяется для подоснов с предварительно выровненной поверхностью.

- 4.7. Если поверхность подосновы имеет неровности и не представляется возможным ее выровнять, рекомендуется выполнять приклеивание плит утеплителя через выравнивающие подкладки из фрагментов плит из полистирола. При этом площадь приклеивания плит и подкладок из полистирола следует принимать не менее 60%.
- 4.8. Монтаж плит утеплителя производят снизу вверх с соблюдением правил перевязки швов: смещение швов по горизонтали, перевязки на углах здания, обрамления оконных проемов плитами с подоконными вырезами.

- 4.9. Первый ряд плит утеплителя рекомендуется опирать на цокольные планки. В качестве цокольных планок следует применять профили из тонколистовой перфорированной стали. Цокольные планки закрепляют к подоснове при помощи винтовых крепежных элементов. Количество крепежных элементов следует принимать не менее 3 шт. на 1 м. Соединение цокольных планок по длине следует проектировать при помощи специальных соединительных накладок; зазор между стыкуемыми планками рекомендуется принимать от 2 до 3 мм.
- 4.10. После приклеивания к подоснове плиты утеплителя закрепляют анкерными устройствами. В качестве анкерных устройств применяются полиамидные или стеклопластиковые дюбель-анкеры.
- 4.11. Схему установки и количество анкерных устройств на 1 м² следует определять в проектной документации на основании прочностного расчета, но не менее 5 шт/м² стены в рядовой зоне фасада и не менее 7 шт/м² стены в краевой зоне фасада, где система утепления испытывает повышенные ветровые нагрузки.
- 4.12. Армированный слой служит для защиты теплоизоляционного слоя от деформаций и механических воздействий, обеспечивает прочность и трещиностойкость декоративнозащитного слоя.

Армированный слой выполняется путем нанесения на поверхность теплоизоляционного слоя клеевого состава с утапливанием в него армирующей щелочестойкой стеклосетки и последующим выравниванием поверхности.

Для предотвращения образования трещин декоративно-защитного слоя в угловых зонах оконных и дверных проемов следует предусматривать дополнительное армирование диагональными стеклосетками размерами не менее 300×300 мм, а также дополнительное армирование внутренних углов откосов стеклосетками длиной не менее 400 мм и шириной, равной ширине откосов.

Для сохранения целостности теплоизоляционного слоя на углах зданий и откосах проемов следует предусматривать усиление из металлических или пластиковых уголков с размерами сторон не менее 25×25 мм.

В местах стыков плит утеплителя, выполненных из разнородных материалов, следует производить дополнительное армирование стеклосетками шириной не менее 200 мм.

4.13. В соответствии с ТКП 45–3.02–113 (7.3.2) на участках стен, где возможны механические воздействия на легкую штукатурную систему утепления в процессе эксплуатации (нижняя часть фасадов — не менее 2,5 м от отметки уровня земли, участки стен на эксплуатируемых лоджиях или балконах, спуски в подвалы и т.п.), следует предусматривать армированный слой с двумя слоями армирующей стеклосетки.

Армированный слой рекомендуется выполнять толщиной не менее 7 мм. Для первого слоя армирования рекомендуется использование стеклосетки плотностью не менее 320 г/м², дополнительно закрепленной фасадными дюбелями в количестве не менее 2 шт/м². Дополнительное дюбелирование следует производить по «мокрому» слою клея.

- 4.14. Декоративно-защитный слой служит для защиты теплоизоляции от атмосферных воздействий и выполняет декоративные функции. Для устройства декоративно-защитного слоя используются штукатурные и окрасочные составы.
- 4.15. Для обеспечения удаления влаги из наружных ограждающих конструкций здания рекомендуется применять для устройства наружных слоев легкой штукатурной системы утепления материалы с коэффициентом паропроницаемости не менее 0,02 мг/ (м·ч·Па). При этом окраску поверхностей декоративно-защитного слоя следует производить составами с коэффициентом паропроницаемости не менее 0,015 мг/ (м·ч·Па).
- 4.16. Общую толщину армированного и декоративно-защитного слоев следует принимать не более 15 мм.

5. Тяжелая штукатурная система утепления

- 5.1. Тяжелая штукатурная система утепления является многослойной конструкцией, состоящей из следующих конструктивных слоев:
 - теплоизоляционного;
 - армированного;
 - декоративно-защитного.
- 5.2. Конструктивное решение тяжелой штукатурной системы утепления приведено на рисунке В.З (приложение В).
- 5.3. В тяжелых штукатурных системах утепления в качестве теплоизоляционного слоя рекомендуется применять плиты из минеральной ваты марки ТЕХНОФАС ЭКСТРА.
- 5.4. При устройстве тяжелой штукатурной системы утепления в цокольной части здания высотой до 2,5 м от отметки уровня земли рекомендуется применять плиты из экструдированного пенополистирола с фрезерованной поверхностью марки ТЕХНОНИКОЛЬ CARBON ECO FAS, ТЕХНОПЛЕКС FAS. При этом рекомендуется применять конструктивное решение, аналогичное легкой штукатурной системе, приведенное на рисунке В.2 (приложение В).
- 5.5. Теплоизоляционный и армированный слои закрепляют к подоснове при помощи оцинкованных шарнирных анкерных устройств. При этом достигается раздельная работа подосновы, теплоизоляционного и армированного слоя системы утепления. Передача нагрузки через шарнирные анкерные устройства позволяет компенсировать температурные и механические деформации декоративно-защитного слоя и снизить их воздействие на подоснову.
- 5.6. Шарнирное анкерное устройство состоит из винтового анкера с петлей (анкера с пластиной), подвижного соединительного стержня и двух стальных фиксирующих пластин, которые закрепляются на стержне. Первая фиксирующая пластина служит для закрепления плиты утеплителя, вторая для закрепления стальной армирующей сетки.
- 5.7. Плиты утеплителя закрепляют к подоснове путем накалывания на зафиксированные перпендикулярно плоскости подосновы соединительные стержни и скрепляют фиксирующими пластинами. При использовании шарнирных анкерных устройств для закрепления теплоизоляционного слоя приклейка плит теплоизоляции к подоснове не производится.
- 5.8. Монтаж плит утеплителя производят снизу вверх с соблюдением правил перевязки швов: смещение швов по горизонтали, перевязки на углах здания, обрамления оконных проемов плитами с подоконными вырезами.
- 5.9. Первый ряд плит утеплителя рекомендуется опирать на цокольные планки с последующим закреплением бесшарнирными анкерными устройствами.

В качестве цокольных планок следует использовать профиль из тонколистовой перфорированной стали. Цокольные планки закрепляют к подоснове при помощи винтовых крепежных элементов. Количество крепежных элементов следует принимать не менее 3 шт. на 1 м. Соединение цокольных планок по длине следует проектировать при помощи специальных соединительных накладок; зазор между стыкуемыми планками, как правило, должен составлять от 2 до 3 мм.

Допускается применять в качестве цокольной планки стальную сетку армированного слоя. При этом из нижнего края сетки формируется желоб, на который опирается первый слой плит теплоизоляции.

- 5.10. Схему установки и количество шарнирных анкерных устройств на 1 м^2 следует определять в проектной документации на основании прочностного расчета, но не менее 5 шт/м^2 стены.
- 5.11. Для устройства армированного слоя в тяжелых штукатурных системах утепления используют оцинкованные стальные сетки из проволоки диаметром от 1 до 3 мм с размером ячейки от 15 до 50 мм и защитно-декоративные штукатурные составы.

Монтаж армирующей сетки производится путем закрепления сетки на стержнях шарнирных анкерных устройств и последующей фиксации пластинами.

Для предотвращения образования трещин декоративно-защитного слоя в угловых зонах оконных и дверных проемов следует предусматривать дополнительное армирование диагональными стальными сетками размерами не менее 300×300 мм.

- 5.12. Декоративно-защитный слой служит для защиты теплоизоляции от атмосферных воздействий и обеспечивает декоративные функции. Для устройства декоративно-защитного слоя используются штукатурные и окрасочные составы.
- 5.13. Для обеспечения удаления влаги из наружных ограждающих конструкций здания рекомендуется применять для устройства наружных слоев легкой штукатурной системы утепления материалы с коэффициентом паропроницаемости не менее 0,02 мг/ (м·ч·Па). При этом окраску поверхностей декоративно-защитного слоя следует производить составами с коэффициентом паропроницаемости не менее 0,015 мг/ (м·ч·Па).
- 5.14. Необходимость устройства температурно-деформационных швов следует определять в проектной документации на основании расчета температурных деформаций.

Температурно-деформационные швы следует выполнять после полного затвердевания декоративно-защитного слоя, но не позднее 14 суток после его устройства. При этом в соответствии с проектом производится разрезка внешних слоев системы утепления вместе с армирующей сеткой до уровня теплоизоляционного слоя.

5.15. Общую толщину армированного и декоративно-защитного слоев следует принимать от 15 до 50 мм.

6. Вентилируемая система утепления с облицовкой легкого и тяжелого типа

- 6.1. Вентилируемая система утепления с облицовкой легкого и тяжелого типа является многослойной конструкцией, состоящей из следующих конструктивных слоев:
 - опорной конструкции;
 - теплоизоляционного слоя;
 - вентилируемой воздушной прослойки;
 - облицовки.
- 6.2. Конструктивное решение вентилируемой системы утепления с облицовкой легкого и тяжелого типа приведено на рисунках В.4, В.5 (приложение В).
- 6.3. Для устройства опорной конструкции рекомендуется применять элементы, изготовленные из коррозионностойких, низколегированных сталей или алюминиевых сплавов.
- 6.4. В вентилируемых системах утепления с облицовкой легкого и тяжелого типа в качестве теплоизоляционного слоя рекомендуется применять плиты из минеральной ваты марки ТЕХНОНИКОЛЬ. При этом теплоизоляционный слой может устраиваться в один или два слоя.
- 6.5. Однослойное утепление выполняется из плит из минеральной ваты с высокой устойчивостью волокон к воздействию воздушного потока.

Для устройства однослойной теплоизоляции рекомендуется применять плиты из минеральной ваты марок ТЕХНОВЕНТ СТАНДАРТ, ТЕХНОВЕНТ ОПТИМА, ТЕХНОВЕНТ ЭКСТРА, ТЕХНОВЕНТ ПРОФ.

6.6. Двуслойное утепление позволяет снизить стоимость и материалоемкость системы утепления за счет использования в качестве основного слоя теплоизоляции плит с низкой плотностью по отношению к плитам внешнего слоя утепления. Использование двуслойного утепления обеспечивает перекрытие швов между плитами утеплителя, что позволяет исключить образование мостиков холода.

Для устройства двуслойной теплоизоляции рекомендуется применять:

- в качестве основного слоя плиты из минеральной ваты марок TEXHOBEHT H, TEXHOBEHT H ПРОФ;
- в качестве наружного слоя плиты из минеральной ваты марок TEXHOBEHT СТАН-ДАРТ, TEXHOBEHT ОПТИМА, TEXHOBEHT ЭКСТРА, TEXHOBEHT ПРОФ.
- 6.7. Плиты из минеральной ваты марки TEXHOBEHT СТАНДАРТ, TEXHOBEHT ОПТИМА, TEXHOBEHT ЭКСТРА, TEXHOBEHT ПРОФ в соответствии с [1] применяются в конструкциях вентилируемых систем утепления в качестве теплоизоляционного слоя без использования ветрозащитных пленок.
- 6.8. При однослойном утеплении плиты утеплителя закрепляются к подоснове при помощи анкерных устройств, монтаж производят снизу вверх с соблюдением правил перевязки швов: смещение швов по горизонтали, перевязка на углах здания, обрамление оконных проемов плитами с подоконными вырезами.
- 6.9. Схему установки и количество анкерных устройств на 1 м² следует определять в проектной документации на основании прочностного расчета, но не менее 5 шт. на одну плиту утеплителя.
- 6.10. В случае устройства двуслойного утепления плиты основного слоя утеплителя следует предварительно закрепить анкерными устройствами в количестве не менее 2 шт. на одну плиту. Количество анкерных устройств для плит внешнего слоя утеплителя следует определять по расчету, но не менее 5 шт. на одну плиту.
- 6.11. В качестве анкерных устройств применяются полиамидные или стеклопластиковые дюбель-анкеры.
- 6.12. Вентилируемая воздушная прослойка между теплоизоляционным слоем и облицовкой обеспечивает удаление влаги из наружных ограждающих конструкций здания.

Толщину вентилируемой воздушной прослойки следует определять в проектной документации по расчету в соответствии с ТКП 45–3.02–113 (6.3).

В соответствии с ТКП 45–3.02–113 (6.3.16), независимо от результатов расчета, минимальную толщину вентилируемой воздушной прослойки следует принимать исходя из высоты здания.

Таблица 6.1 — Минимальная толщина вентилируемой воздушной прослойки

Высота здания	Минимальная толщина воздушной прослойки
До 6 м	30 мм
6–12 м	40 мм
12-26 м	50 мм
Более 26 м	60 мм

6.13. Для устройства облицовок легкого типа применяются металлические, композитные, керамические, керамогранитные плиты (массой до 70 кг/м²); для облицовок тяжелого типа применяются бетонные, каменные панели (массой 70 кг/м² и более).

7. Вентилируемая система утепления с облицовкой из мелкоштучных материалов

- 7.1. Вентилируемая система утепления с облицовкой из мелкоштучных материалов является многослойной конструкцией, состоящей из следующих конструктивных слоев:
 - теплоизоляционного;
 - вентилируемой воздушной прослойки;
 - облицовки из мелкоштучных материалов.

- 7.2. Конструктивное решение вентилируемой системы утепления с облицовкой из мелкоштучных материалов приведено на рисунке В.6 (приложение В).
- 7.3. В вентилируемых системах утепления с облицовкой из мелкоштучных материалов в качестве теплоизоляционного слоя рекомендуется применять плиты из минеральной ваты марки ТЕХНОБЛОК СТАНДАРТ.
- 7.4. Теплоизоляционный слой закрепляется к подоснове при помощи анкерных устройств, монтаж производят снизу вверх с соблюдением правил перевязки швов: смещение швов по горизонтали, перевязка на углах здания, обрамление оконных проемов плитами с подоконными вырезами.
- 7.5. В качестве анкерных устройств применяются полиамидные или стеклопластиковые дюбель-анкеры.
- 7.6. Схему установки и количество анкерных устройств на 1 м² следует определять в проектной документации на основании прочностного расчета, но не менее 5 шт. на одну плиту утеплителя.
- 7.7. Рекомендации по определению толщины воздушной прослойки приведены в 6.12 настоящих рекомендаций.
- 7.8. В случае устройства системы с воздушной прослойкой толщиной менее 40 мм для ее вентиляции устраиваются продухи в нижней и верхней частях стены для поддержания требуемого тепловлажностного режима внутри конструкции.
- 7.9. В качестве облицовки может применяться облицовочный кирпич или другие мелкоштучные материалы, соответствующие требованиям действующих ТНПА. Марку мелкоштучных материалов, кладочного раствора определяют в соответствии с СНиП II-22.
- 7.10. Для создания продухов вентиляционные отверстия в облицовке следует располагать в вертикальных швах с установкой коробов в соответствии с расчетом как для конструкций с вентилируемой воздушной прослойкой.

Суммарную площадь вентиляционных отверстий рекомендуется определять из расчета не менее 75 см² на 20 м² площади стен, включая площадь окон. Нижние (верхние) вентиляционные отверстия, как правило, следует совмещать с цоколями (карнизами), причем для нижних отверстий предпочтительно совмещение функций вентиляции и отвода влаги.

Рекомендуемое расстояние между вентиляционными отверстиями (продухами) в облицовке составляет 3 м по высоте и 1 м по ширине.

7.11. Закрепление облицовки к подоснове выполняется гибкими связями из базальтопластика или стеклопластика с диаметром стержня не менее 6 мм.

Для обеспечения возможности задать ширину воздушной прослойки между облицовкой и теплоизоляционным слоем следует применять фиксирующие прижимные шайбы из полиамида.

Шаг связей по горизонтали следует принимать по расчету, но не менее 500 мм — по горизонтали в плоскости стены, не менее 300 мм — по периметрам проемов и в верхней перемычечной зоне и не менее чем через каждые восемь рядов кладки — по вертикали.

7.12. Для компенсации температурных колебаний в облицовке устраиваются горизонтальные и вертикальные температурно-деформационные швы.

Необходимость устройства температурно-деформационных швов следует определять в проектной документации на основании расчета температурных деформаций.

7.13. Для герметизации температурно-деформационных швов применяются уплотняющие жгуты и одно- и двухкомпонентные полиуретановые герметики.

P 3.02.150-2015 P 3.02.150-2015

Приложение А (справочное)

Номенклатура и рекомендуемая область применения теплоизоляционных материалов ТЕХНОНИКОЛЬ

Таблица А.1 — Рекомендуемая область применения теплоизоляционных материалов ТЕХНОНИКОЛЬ

Марка плиты	Рекомендуемая область применения				
Плиты из минеральной ваты					
ТЕХНОФАС, ТЕХНОФАС ЭФФЕКТ	Легкие штукатурные системы утепления				
ТЕХНОФАС ЭКСТРА	Тяжелые штукатурные системы утепления				
ТЕХНОВЕНТ СТАНДАРТ, ТЕХНОВЕНТ ОПТИМА, ТЕХНОВЕНТ ЭКСТРА, ТЕХНОВЕНТ ПРОФ	Вентилируемые системы утепления (однослойное решение, двуслойное решение — наружный слой)				
ТЕХНОВЕНТ Н, ТЕХНОВЕНТ Н ПРОФ	Вентилируемые системы утепления (двуслойное решение — внутренний слой)				
ТЕХНОБЛОК СТАНДАРТ	Вентилируемые системы утепления с облицовкой из мелкоштучных материалов; Вентилируемые системы утепления (двуслойное решение — внутренний слой)				
Плиты из экструдированного пенополистирола					
ТЕХНОНИКОЛЬ CARBON ECO FAS, ТЕХНОПЛЕКС FAS	Легкие и тяжелые штукатурные системы утепления в цокольной части зданий				

Приложение Б (справочное)

Характеристики теплоизоляционных материалов ТЕХНОНИКОЛЬ

Таблица Б.1 — Физико-механические характеристики плит из минеральной ваты

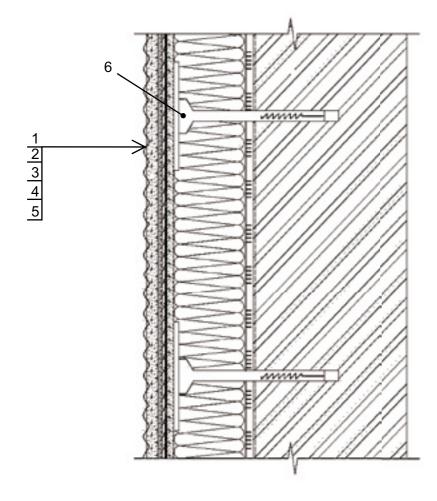
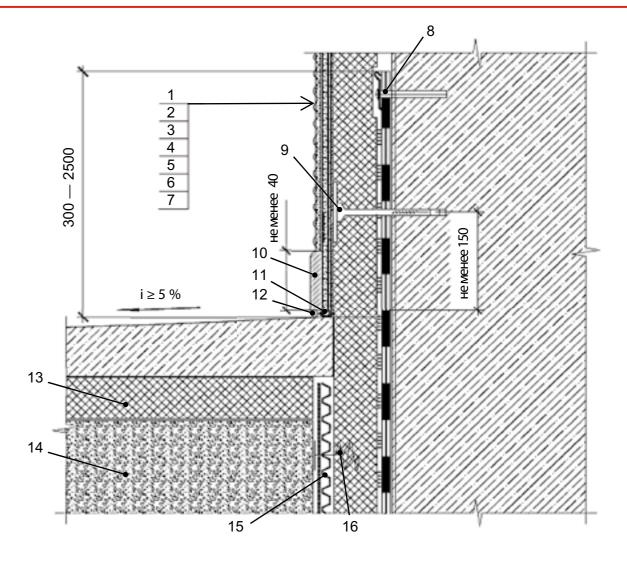

	Значение для плит из минеральной ваты марки									
Наименование показателя	ТЕХНОФАС	ТЕХНОФАС ЭФФЕКТ	ТЕХНОФАС ЭКСТРА	ТЕХНОВЕНТ СТАНДАРТ	ТЕХНОВЕНТ ОПТИМА	техновент экстра	ТЕХНОВЕНТ ПРОФ	технвент н	ТЕХНОВЕНТ Н ПРОФ	ТЕХНБЛОК СТАНДАРТ
Плотность, кг/м³	131–159	131–135	80–100	72–88	81–99	68–82	80–100	32–40	40–50	40–50
Предел прочности на отрыв слоев, кПа, не менее	15	15	6	3	5	5	8	_	-	_
Предел прочности при изгибе, МПа, не менее	0,1	0,1	0,034	_	_	_	_	_	_	_
Коэффициент теплопроводности, Bt/(м·°C):	0,038 0,041	0,038 0,040	0,036 0,038	0,037 0,041	0,036 0,038	0,038 0,039	0,037 —	0,038	0,037 0,040	0,036 0,039
Прочность на сжатие при 10 %-ной деформации, кПа, не менее	45	45	15	10	12	10	15	_	_	_
Сжимаемость, %, не более	_	_	_	2	2	3	2	20	10	10
Водопоглощение при кратковременном частичном погружении, кг/м², не более	1	1	1	1	1	1	1	1	1	1
Группа горючести	ΗГ	НΓ	ΗΓ	НΓ	НΓ	НΓ	ΗΓ	НΓ	НΓ	ΗГ

Таблица Б.2 — Физико-механические характеристики плит из экструдированного пенополистирола

Наименование	Значение для плит из экструдированного пенополистирола					
показателя	XPS CARBON ECO FAS	ХРЅ ТЕХНОПЛЕКС FAS				
Плотность, кг/м ³	20–45	20–45				
Прочность на сжатие при 10 %-ной деформации, кПа, не менее:						
30–39 мм	100	100				
≥ 40 мм	150	150				
Предел прочности при изгибе, МПа, не менее	0,15	0,10				
Коэффициент теплопроводности при 25 (± 5) °C, Вт/(м -°C):						
< 40 mm	0,030	0,032				
40-79 мм	0,030	0,033				
≥ 80 мм	0,032	0,037				
Коэффициент теплопроводности в условиях эксплуатации A и Б, Вт/(м·°C):	0.034	0,034				
Водопоглощение по объему при долговре-	.,	-,				
менном погружении, %, не более	0,7	0,7				
Группа горючести	Γ4	Γ4				


Приложение В (рекомендуемое)

Конструктивные решения систем утепления с применением теплоизоляционных материалов ТЕХНОНИКОЛЬ

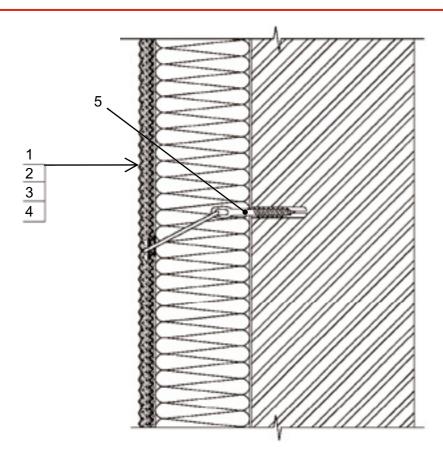

1— декоративно-защитный слой; 2— армированный слой; 3— теплоизоляционный слой: плиты из минеральной ваты ТЕХНОФАС, ТЕХНОФАС ЭФФЕКТ; 4— клеевой слой; 5— подоснова; 6— анкерное устройство

Рисунок В.1 — Конструктивное решение легкой штукатурной системы утепления

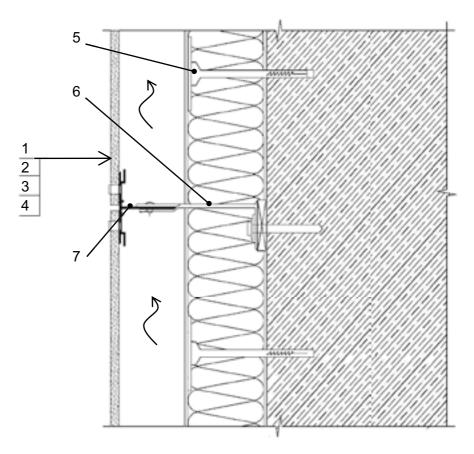

1— декоративно-защитный слой; 2— армированный слой; 3— теплоизоляционный слой: плиты из экструдированного пенополистирола ТЕХНОНИКОЛЬ CARBON ECO FAS, ТЕХНОПЛЕКС FAS; 4— клеевой слой; 5— гидроизоляция цоколя в один или два слоя рулонного битумно-полимерного материала; 6— праймер битумный; 7— подоснова; 8— механическое крепление гидроизоляции; 9— анкерное устройство; 10— керамическая плитка; 11— уплотнительный шнур; 12— полиуретановый герметик; 13— теплоизоляционный слой отмостки; 14— грунт обратной засыпки; 15— защита гидроизоляции из профилированной мембраны; 16— крепежный элемент профилированной мембраны

Рисунок В.2 — Конструктивное решение легкой штукатурной системы утепления цокольной части здания


1— декоративно-защитный слой; 2— армированный слой; 3— теплоизоляционный слой: плиты из минеральной ваты ТЕХНОФАС ЭКСТРА; 4— подоснова; 5— анкерное устройство

Рисунок В.З — Конструктивное решение тяжелой штукатурной системы утепления

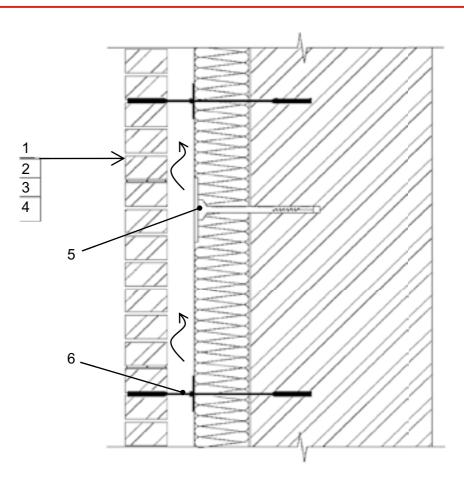

1 — облицовка; 2 — вентилируемая воздушная прослойка; 3 — теплоизоляционный слой: плиты из минеральной ваты ТЕХНОВЕНТ СТАНДАРТ, ТЕХНОВЕНТ ОПТИМА, ТЕХНОВЕНТ ЭКСТРА, ТЕХНОВЕНТ ПРОФ; 4 — подоснова; 5 — анкерное устройство; 6 — опорная конструкция; 7 — крепежный элемент облицовки

Рисунок В.4 — Конструктивное решение вентилируемой системы утепления с облицовкой легкого или тяжелого типа

1— облицовка; 2— вентилируемая воздушная прослойка; 3— наружный теплоизоляционный слой: плиты из минеральной ваты ТЕХНОВЕНТ СТАНДАРТ, ТЕХНОВЕНТ ОПТИМА, ТЕХНОВЕНТ ЭКСТРА, ТЕХНОВЕНТ ПРОФ; 4— внутренний теплоизоляционный слой: плиты из минеральной ваты ТЕХНОВЕНТ Н, ТЕХНОВЕНТ Н ПРОФ; 5— подоснова; 6— анкерное устройство; 7— опорная конструкция; 8— крепежный элемент облицовки

Рисунок В.5 — Конструктивное решение вентилируемой системы утепления с облицовкой легкого или тяжелого типа с двуслойным утеплением

1— облицовка; 2— вентилируемая воздушная прослойка; 3— теплоизоляционный слой: плиты из минеральной ваты ТЕХНОБЛОК СТАНДАРТ; 4— подоснова; 5— анкерное устройство; 6— гибкая связь из базальтопластика (стеклопластика)

Рисунок В.6 — Конструктивное решение тепловой изоляции наружной стены с вентилируемой воздушной прослойкой и облицовкой из мелкоштучных материалов

Библиография

[1] Заключение об эмиссии волокон плит минераловатных теплоизоляционных торговой марки «ТЕХНОНИКОЛЬ» НИИ Строительной Физики (НИИСФ РААСН), 01.02.2016 г.

8 800 200 05 65

ПРОФЕССИОНАЛЬНЫЕ КОНСУЛЬТАЦИИ www.tn.ru

