29 января

Зависимость теплопроводности газонаполненных утеплителей PIR от температурных условий эксплуатации

Шалимов В. Н., Борисов А. А., Нагаев И. Ф. «ТехноНИКОЛЬ-Строительные Системы»

Введение

Теплопроводность утеплителя является одной из ключевых характеристик, свидетельствующих о его эффективности. Температурозависимые физические процессы, протекающие в строительных материалах на макро- и микроуровнях, могут повлечь изменения, влияющие на физико-механические характеристики этих материалов, в целом. Это является одной из основных причин существования ряда «гостовских» измерений λ при разных температурах, например, при 100С, 250С и т.д. Следовательно, получение достоверных сведений о теплопроводности материалов в различных условиях особенно важно. Это позволяет исключить любые спекуляции в нечестной конкурентной борьбе, основанные на недостоверных домыслах, способных дискредитировать в глазах потребителя новые виды утеплителей. Данная статья посвящена таким материалам на основе вспененных полиуретанов (PUR/PIR), занявшим значительную долю зарубежного и отечественного рынков общестроительной изоляции и изоляции холодильных установок.

Особенности PIR

В сравнении с «классическими» утеплителями, существующими на строительном рынке продолжительное время, PIR является относительно новым и, благодаря некоторым отличительным особенностям химического и физического строения, его можно назвать инновационным продуктом. Наибольший интерес для данного исследования представляют именно особенности физического строения, требующие более подробного рассмотрения.

Структурная организации PIR осложнена тем, что он не является монокомпонентным: в его состав, помимо твердого вещества, входит специальный газ. В процессе вспенивания в присутствии специально подобранного для требуемых условий работы пенообразующего агента и последующего отверждения, создается пористая мелкоячеистая структура, в которой объём герметично замкнутых пор (ячеек) составляет более 96 %, что делает материал объёмным и сверхлегким. В ячейках остается инертный газ, имеющий чрезвычайно низкий коэффициент теплопроводности (менее 0,015 Вт/(м*К).

В настоящее время вспенивающие агенты подразделяют на химические («муравьиная» кислота, вода) и физические (фреоны, пентаны и др. низкокипящие инертные органические вещества). Химические вспениватели реагируют с полимерным компонентом и образуют углекислый газ. В случае физических вспенивателей используется их фазовый переход из жидкого состояния в газообразное. Применение того или иного типа вспенивающих агентов позволяет корректировать/подбирать физико-механические характеристики готового продукта, поскольку характеристики газа и его стабильность в ячейках PIR напрямую влияют на долговечность утеплителя. Для справки приведём данные о результатах испытаний в НИИМОССТРОЙ [1], подтверждающие стойкость PIR к периодическому воздействию знакопеременных температур от минус 30°С до 50°С и повышенной влажности. По оценке специалистов, срок службы плит утеплителя из жесткого PIR составляет более 50 лет.

Теоретические аспекты теплопроводности PIR при различных температурах

Актуальность исследуемому вопросу добавляет тот факт, что в типовом кровельном «пироге» зона отрицательных температур занимает практически половину его толщины (см. рис 2.1). Поэтому любая ошибка в теплопроводности может существенно исказить весь теплотехнический расчет. 

Зависимость теплопроводности газонаполненных утеплителей PIR от температурных условий эксплуатации

В ходе исследования особое внимание было обращено на работу [2], опубликованную несколько лет назад на сайте зарубежной ассоциации BSC. Особый интерес общественности вызвал график (Рис. 2.2), якобы свидетельствующий о том, что что при определенных температурах происходит критическое изменение коэффициента теплопроводности (λ) одной из модификаций PIR (на графике выделено коричневым цветом), не характерное для традиционных утеплителей, чья величина теплопроводности имела линейную зависимость. Согласно представленным данным наблюдается резкое увеличение λ PIR-изоляции при температурах ниже 150С до значений, превышающих теплопроводности всех известных утеплителей. Столь необычное поведение теплоизолирующей способности пенополиизоцианурата вызвало интерес и желание разобраться в данном вопросе.

Зависимость теплопроводности газонаполненных утеплителей PIR от температурных условий эксплуатации

В процессе анализа представленных материалов были выявлены некоторые недостатки работы [2], которые заключаются в простой констатации наблюдаемых экспериментальных данных без каких-либо глубоких научных обоснований. Нехватка сведений о химическом составе используемых полимеров, их характеристик, сырьевого состава и примененных вспенивающих агентах дало широкое поле для собственных трактовок отечественным специалистам в работе [3]. В частности, по их мнению, причина наблюдаемого резкого ухудшения λ кроется в возможной конденсации вспенивающего агента, находящегося в ячейках материала, т.е. переходе его из газообразного состояния в жидкое. А жидкая фаза вспенивающего агента, согласно представленным данным, имеет большую теплопроводность.

Отметим, что можно сколь угодно долго рассуждать о теоретических аспектах поведения неидентифицированного материала, однако наиболее объективную картину можно получить лишь эмпирическим методом с помощью высокоточного оборудования.

Независимые практические исследования PIR-изоляции

С точки зрения минимальной достаточности данных, позволяющих судить о температурных метаморфозах теплопроводности PIR в пределах существующих нормальных рабочих условий эксплуатации (-600С; +1100С), полезными являются работы [4], [5], [6], [7]. В них экспериментальным путем доказано, что тенденция к резкому увеличению коэффициента теплопроводности при понижении средней температуры (в частности, ниже 15°С), отсутствует, а результаты ранее опубликованной работы [2] не соответствуют действительности и вызывают некоторые сомнения.

Однако принципиальная позиция авторов данной статьи заключается в установлении целостной картины поведения материала в условиях, превосходящих по сложности нормальную эксплуатацию в строительстве и холодильных установках. Необходимость получения всесторонних и максимально объективных данных о изменениях теплопроводности заставили провести масштабное исследование с использованием сверхвысокоточного оборудования (рис. 3.1).

Зависимость теплопроводности газонаполненных утеплителей PIR от температурных условий эксплуатации
Рис. 3.1 Лабораторное измерительное оборудование ВНИИФТРИ

Данное исследование является уникальным и беспрецедентным. С уверенностью можно сказать, что при испытании теплопроводности до некоторых пор не удавалось «заглянуть» за отметку минус 900С – предельный порог для оборудования во ВНИИМ им. Д.И. Менделеева [5]. Осуществленные эксперименты позволили определить поведение материала при рекордных температурах до минус 1800С. Испытания были проведены в лаборатории №310 НИО-3 сектора эталонов и научных исследований в области измерений теплофизических величин ФГУП ВНИИФТРИ. Три серии из 106 измерений проводились в атмосфере воздуха при комнатной температуре 295 К, и в атмосфере азота в диапазоне температур 80-360 К.

Данные результатов измерений оформлены в отчете [8] и сведены в графики (Рис. 3.2, 3.3). Особый интерес вызывает поведения материала в температурном диапазоне наиболее часто встречающихся отрицательных температур, начинающихся левее вертикальной красной линии. Укрупненный график 3.3 говорит том, что даже наличие потенциальной опасности ухудшения λ из-за конденсации газа, визуально заметное как спрямление и небольшой рост кривой теплопроводности, не означает, что ухудшение теплотехнических характеристик будет неизбежным. В частности, внутри материала контакт теплопроводной жидкой фазы с поверхностью пор, может быть незначительным, в отличие от газа, контактирующего со всей внутренней поверхностью пор. Образовавшийся в порах PIR при конденсации вакуум обладает хорошей компенсаторной функцией, позволяющей не только не допустить роста количества передаваемого тепла, но и способствует его существенному снижению. Как мы видим, данный процесс не выражен ярко, что свидетельствует о качестве и стабильности теплоизоляционного материала во всём исследуемом диапазоне температур.

Представленные данные из лаборатории ВНИИФТРИ практически совпадают с академическим представлением зарубежной лаборатории классических данных (см. рис. 3.4) о поведении газонаполненных полиуретановых материалов при изменении температуры [9].

Практической реализацией данного исследования стали рекомендации по использованию PIR в экстремальных арктических условиях заполярья на нефтегазодобывающем месторождении полуострова Ямал, где был изолирован участок вечной мерзлоты, находящийся непосредственно под факелом утилизации попутного газа, с целью предотвращения разрушения конструкции из-за оттаивания грунта при воздействии тепла от пламени горелки.

Зависимость теплопроводности газонаполненных утеплителей PIR от температурных условий эксплуатации
Рис 3.5 – Факел утилизации попутного газа с изолированной площадкой грунта.

Основные выводы

Подытоживая проделанную экспериментальную работу, можно сделать ряд основных утверждений:

  • Любой современный материал требует глубокого всестороннего изучения. Исследование его поведения, в том числе, в более широком диапазоне температур, чем подразумевает массовое применение, позволяет гарантированно избежать ошибок в проектировании, дискредитации материала в конкурентной борьбе и проблем в эксплуатации.
  • Температурная зависимость теплопроводности PIR носит не гладкий характер, несколько затрудняющий интерпретацию результатов. Однако детальный анализ графиков и сравнение с академическими данными дает хорошее понимание происходящих в материале физических процессов.
  • Наличие перелома графика свидетельствует о конденсации тяжелого газа, находящегося в ячейках-порах материала. Однако увеличение теплопроводности незначительно и больше напоминает стабилизацию значения λ при понижении температуры.
  • Можно утверждать о значительном повышении эффективности PIR в зоне отрицательных температур, в которой ранее не было представления о поведении материала. Об этом свидетельствует снижение коэффициента λ, принимающее характер стремительного падения.
  • Столь стремительное снижение теплопроводности объясняется очень малым пятном контакта образовавшейся в порах жидкой фазы тяжёлого инертного газа с твёрдым веществом стенок. Факторы увеличения за счёт этого доли лёгких молекул в газовой фазе, а также образование вакуума, замещающего газовую фазу вспенивающего агента, не участвуют в передаче тепла. Как оказалось, вакуум надёжно выполняет компенсаторную функцию.
  • Дальнейшее стабильное падение теплопроводности при понижении температуры говорит о герметичности ячеек. Это косвенно может свидетельствовать о чрезвычайно длительном процессе замещения инертного газа в ячейках, сопоставимом со сроком эксплуатации материала, превышающем 50 лет.
  • Что касается работы [2], указанный в ней вид полиизоциануратов является одним из архаичных поколений PIR, имеющих весьма отдаленное отношение к современным его видам. Наиболее вероятно использование устаревших вспенивающих агентов (фторпроизводных углеводородов, а также диоксидуглерода СО2), имеющих гораздо более высокую склонность к возможной конденсации в ячейках полимера при более высоких температурах. Поэтому результаты их испытаний нельзя рассматривать применительно к российским материалам.

Список использованных источников

  1. Заключение  № 174 по результатам работы по теме: «Проведение ускоренных испытаний на стойкость к климатическим воздействиям по методике ОАО «НИИМосстрой» сроком на 50 лет образцов пенополиизоцианурата (PIR)»
  2. Building Science Corporation (BSC) «In Cold climates, R-5 Foam beats R-6». Режим доступа: http://www.greenbuildingadvisor.com/blogs/dept/musings/cold-climates-r-5-foam-beats-r-6.
  3. Воронин А. Анализируй теплопроводность Режим доступа: http://vseokrovle.ru/analizirujj-teploprovodnost.html.
  4. Стукань Е. Исследование теплоизоляционных свойств пенополиизоциануратных (ПИР) сэндвич-панелей при пониженных температурах. Режим доступа: http://www.nappan.ru/upload/images/PIR-value.pdf.
  5. Протокол измерения теплопроводности №2413/02, ВНИИМ им. Д.И. Менделеева, Санкт Петербург, 2017.
  6. Протокол ООО «Сертификационно-исследовательский центр "Теплоизоляция" при МГУ им. М.В. Ломоносова №0109/14-01 от 16.09.14.
  7. Мельников В.С., Ванин С.А., Мельников М.В. Суперпозиция факторов теплопроводности строительных пенополиуретанов и пенополиизоциануратов // Интернет-журнал «НАУКОВЕДЕНИЕ» Том 9, №3 (2017).
  8. Протокол испытаний №3/310-234.17, ФГУП «ВНИИФТРИ», Москва, 2017.
  9. Sparks, LL; “Thermal Conductivity of a Polyurethane Foam from 95 K to 340 L”, NBSIR 82-1664, March 1982.

Оригинальная версия статьи размещена на vseokrovle.ru